Liang FANG’s Blog My Thoughts On Everything

浅析 Gartner 2018 年十大战略性技术趋势

Gartner Top 10 Strategic Technology Trends

(根据 Gartner 公开资料整理)

Gartner 近日发布了《2018 年十大战略性技术趋势》,与 2017 年一样,整体上统称为「智能数字网格」(Intelligent Digital Mesh),指人、设备、内容和服务的结合,关联物理世界和数字世界,并将技术融入到未来数字业务的各个环节中。

2017 vs 2018

2017 2018
Intelligent Intelligent
Artificial Intelligence and Advanced Machine Learning AI Foundations
Intelligent Apps Intelligent Apps and Analytics
Intelligent Things Intelligent Things
Digital Digital
Virtual Reality and Augmented Reality Digital Twins
Digital Twins Cloud to the Edge
Blockchains and Distributed Ledgers Conversational Platform
Mesh Immersive Experience
Conversational Systems Mesh
Digital Technology Platforms Blockchain
Mesh App and Service Architecture Event-Driven
Adaptive Security Architecture Continuous Adaptive Risk and Trust

三大主题没有变化

Intelligent:AI 如何渗透到几乎每一项技术中,明确聚焦有望带来更动态、灵活和潜在的自主系统;关键词:AI

Digital:融合虚拟世界和现实世界,打造一个沉浸式的数字增强和连接的环境;关键词:虚实

Mesh:扩展的人员、业务、设备、内容和服务之间的联系,交付数字结果;关键词:连接

十大趋势有变化、也有增减

Intelligent 部分的三个趋势基本没有变化:

1) Artificial Intelligence and Advanced Machine Learning —> AI Foundations

2017 年的主要强调的是当前的热点领域如 DL、NN、NLP,而 2018 年的 AI Foundations 涵盖范围更广,包括了更多以往的 AI 技术如专家系统、决策树和线性回归等,同时也包括了硬件的进步。

2) Intelligent Apps —> Intelligent Apps and Analytics

在 2017年 Intelligent Apps 的基础上,2018 年增加了 Analytics,从三个细分领域 Analytics、Process、User Experience 发挥 AI 的价值。

3) Intelligent Things —> Intelligent Things

名字上没有变化,2018 年在内涵上补充了 Swarm Intelligence,从单个智能体演化到智能体间的群体合作。

Digital 部分从三个趋势变为四个:

4) Virtual Reality and Augmented Reality —> Immersive Experience

在 2017 年的 VR、 AR 的基础上,2018 年的 Immersive Experience,还包括 MR 和 conversational platforms,形成一种 Mesh Solutions,Fluid UX Across Systems。

5) Digital Twins —> Digital Twins

名字上没有变化,都是现实世界的数字表示和建模,2018 年在内涵上补充了多个 digital twins 之间的整合和复合视图,并强调模型的健壮性、实时性、智能性。

6) Conversational Systems(Mesh) —> Conversational Platform

Conversational UI 的交互模式主要但不限于自然语言对话,视觉、味觉、传感都能成为物-物之间的对话形式。从 System 到 Platform 的转变强调的是对第三方服务的集成。

7) Cloud to the Edge(New)

从去年底起,Edge Computing 就一直是热点,2018 年 Gartner 终于加上了。Cloud/Edge 不是对立而是相互补充。

Mesh 部分从四个趋势变为三个:

8) Blockchains and Distributed Ledgers(Digital) —> Blockchain

Blockchains and Distributed Ledgers 从 Digital 转至 Mesh,2017 年更强调技术本身的优劣势,而 2018 年则更强调应用领域和场景,尽管面临诸多挑战,但看好其远期的巨大潜力。

9) Event-Driven(New)

以往是 Request-Driven,但如果能对业务事件进行更快更好的感知和分析,则能提供更好的洞察,这就需要 Event Broker,IoT 和 AI 感知能力是其推动力。Request-Driven 和 Event-Driven 可以互为补充。

10) Adaptive Security Architecture —> Continuous Adaptive Risk and Trust

关注点都是安全,特别是 Threat Intelligence ,不同之处在于 2017 年侧重 Architecture,而 2018 年则侧重 DevSecOps Model,打通安全团队和 DevOps 团队间的隔阂。

消失的两个趋势:

11) Digital Technology Platforms

Information system、Customer experience、Analytics and intelligence、IoT、Business ecosystem 五种平台的堆叠组合。

12) Mesh App and Service Architecture

MASA 是一种多通道解决方案架构,支持多个用户使用多个设备,并通过多个网络进行通信以访问应用程序功能。 该架构封装了服务,并在多个级别和组织边界上公开了 API,这个趋势里也提到了 React to events。

Google 的「硬」化:AI + software + hardware

AI + software + hardware

(题图来自 VentureBeat

2017 年 10 月 4 日,Google 举办了秋季新品发布会,这次的主题是硬件。Google 一口气发布了 Pixel 2/2 XL 手机、Pixelbook 上网本、Home Mini/Max 智能音箱、Pixel Buds 智能耳机,DayDream View VR 盒子,以及 Clips 摄像头等多款硬件。

数量之多令人目不暇接,同时在每一个产品的介绍中,都不断强调两个关键词:AI设计。会上首次提出了「AI + software + hardware」的理念,Google 的硬件团队领导 Rick Osterloh 认为,「下一个伟大的飞跃将发生在AI、软件和硬件的交汇点」,同时他还提到 Google 的新设计哲学,「Google 相信通过将 AI 技术置于其设计理念的核心位置,可以将其从竞争对手之中脱颖而出。」

1. hardware

Google 的 AI 和 software 暂不赘述,我们重点来谈谈 hardware。Google 本身一直是一个软件公司,虽然在硬件领域有过多次试水,但多数时候感觉只是展示一下自己的能力,并没有打算过多深入1,因为硬件并非 Google 的强项。

而这一次,Google 把能做的硬件几乎都做了,甚至包括多年未更新的 Pixelbook(前身为的 Chromebook)。观察这次发布的所有硬件产品,我有如下几点印象:

  • Pixel 成为 Google 硬件产品的轴心
    • 这一点从产品名称就可以明显看出来,Pixel Buds 的实时翻译甚至必须搭配 Google Pixel 系列手机才能正常使用
    • 与 Apple 的「去 iPhone 化」呈相反趋势,如 Apple Watch 有了无线接入,可独立于 iPhone 使用,不再是 iPhone 的附属设备;当然双方各自的目标不同,Apple 是希望 iPhone 用户能延伸购买更多的产品线,而 Google 则希望打造出一款在高端智能机领域能与 iPhone 一较高下的主流产品
  • Home 系列则从智能家居角度切入
    • 智能控制,旗下 Nest 系列展现了智能家居产品间很好的集成,如 Nest 的互联摄像头门铃 Nest Hello 可以配合 Chromecast 和 Google Home 使用,响应用户请求,如用户发出指令「看看门口是谁」,那么就可以通过电视机看到门前的实况视频
    • 增强聆听2,Google Home 可以帮助识别说话的是快递小哥还是陌生人,判断主人的声音选择合适的通讯录拨打,Home Max 的「Smart Sound」技术根据房间结构对音质进行优化并且在播放不同类型的音乐时也会自动进行调节,当然还有 Pixel Buds 的实时翻译功能
  • 各种硬件都做,符合 Google 的「Reach」战略
    • 与 Apple 可以通过小市场份额赚取大利润相比,Google 商业模式的立足点在于广覆盖,以尽可能地获取更多用户的数据,这也是 Android 在「80% 市场」和「高端市场」中选择前者的原因之一
    • 做了这么多硬件,一方面是希望 AI 能力的落地,另一方面也是希望收集更多的数据,让 AI 更为智能

2. + software + AI

看过硬件本身,我们再来看看 hardware 是怎么与 software + AI 结合的。我觉得,可以从一明一暗两条线来看:

  • 明线:software 层面,通过 Google Assistant 进行串联整合,是通向「环境计算」的关键

    • Pixel 2/2 XL,支持「Active Edge」唤醒 Google Assistant
    • Pixelbook,Google Assistant 专门按键, 同时 Pixelbook Pen 用笔圈出屏幕上的内容可通过 Google Assistant 进行搜索
    • Home Mini/Max,内部集成了 Google Assistant
    • Pixel Buds,长按唤出 Google Assistant,可以快速切换音乐、接收短信
    • Clips,可通过 Google Assistant 操作拍摄的动态照片及视频
    • 可以说,除了聚焦 VR 的 DayDream,所有硬件产品都支持 Google Assistant,而且可以相互打通,Google Assitant 能够理解各种端,也能控制各种端
  • 暗线:AI 层面,背后是「机器学习+云+芯片」的协力支持

    • Google Assistant 毫无疑问是 AI ,支持「语音+文字+图片」整合的对话式交互,从技术层面来看在各大科技公司中处于领先地位
    • 硬件们用到的其他 AI 技术包括:Pixel 2 的「单摄像头+算法」,可以拍出不输双摄的人像模式;Google Lens,可以通过手机识别眼前的一切;Home Max 内置的「Smart Sound」;Pixel Buds 的实时翻译……
    • Google 敢这么大范围地将 AI 铺开,AI 技术和算力都是必不可少的要素,得益于 Google 在 AI 技术、云、芯片层面都有前瞻布局

3. Why Now?

Google 为什么现在开始发力硬件?

Google 的硬件有着并不成功的历史,前有收购 Moto 又转手卖出3,后有 Google Glass 的先扬后抑,还有 Chromebook 等的不温不火。那么这一次 Google 发力硬件的意图究竟为何?我是从以下几个角度来看的:

  • 动机:Google 的 AI 技术领先,需要考虑通过 AI 应用落地形成正反馈,强化领先

    • Google 一只强调「AI 民主化」(Democratizing AI)的理念,要让更多人享受到 AI 技术应用
    • 如果说 Google Cloud 是 ToB 和 ToD 侧的「技术民主化」4,那么 Google 还想在 ToC 侧率先垂范「应用民主化」,而应用落地的关键在于场景,硬件则正好代表了使用场景及其入口
    • 正如上文所述,各种硬件都做符合 Google 的「Reach」战略
    • 设计方面存在的不足,Google 希望通过 AI 来弥补,「AI + Cloud Ecosystem」 vs 「Design + App Ecosystem」,后者当然指的是 Apple
  • 底气:Google 在 AI 领域有着前瞻而广泛的布局,可以说各个层面均处于领先

    • 前沿技术研究,DeepMind,致力于通用人工智能(AGI)的研究;不仅有会下围棋 AlphaGo,也贡献了这次 Google Assistant 的语音合成技术,能提供更为自然的合成语音,并且成为谷歌最新的TPU云基础设施上发布的第一个产品;此外,DeepMind 每次发表的论文都是 AI 科学家们的必读文章
    • 深度学习平台,TensorFlow,开源以来已经成为最受欢迎的深度学习平台,没有之一;产品的质量、快速的迭代、硬件的支持、活跃的社区和积极的反馈,形成了良性循环
    • 人工智能芯片,TPU,Google 自研云端深度学习芯片公布之时是很爆炸的消息,目前已经演进至第二代 Cloud TPU,内部多数服务已基于 TensorFlow + TPU 运行,为 Google 在 AI 时代的算力提供了很好的「性价比」;这次发布的 Clips 上也用到了 Intel Movidius 的端上芯片,提供了极低能耗地视频运算性能
    • Google Cloud, 虽然在云计算市场中暂时只处于第三位左右,但它是将 Google 的 AI 能力对外交付的中枢平台,整合了 TensorFlow、TPU等,Google Cloud 正从 AI 角度切入云计算市场,打造 AI 开发者生态,且 Kubernetes 等技术也在进一步解耦 AWS 的领先优势
    • 良好的现金流,最后足够的资本也是支撑 Google 发力硬件市场必不可少的要素,互联网广告的整体大盘仍在增长,Google 也持续多年保持了 20% 以上的年均增长

4. Challenge

当然,Google 的硬件之路想要成功还有很多难关需要克服,比如:

  • 如何玩线下:实体店、渠道、营销等等,小米在此处应有许多血与泪
  • 如何玩高端:Pixel 系列选择从高端市场切入,其实是 Google 所不擅长的领域,毕竟占据「80% 市场」和「高端市场」所需要的能力是不一样的
  • 如何玩设计:「将 AI 技术置于其设计理念的核心位置」如何落入实践?AI 通过数据可以对人类行为进行归纳和预测,但设计作为一种艺术5,其本质在于突破既有的行为范式,设计的创新源自追求统计学上的噪音。
  • 如何玩轴心:Pixel / Google Assistant,产品轴心 / 服务轴心,单一轴心 / 环境计算……两相比较,用户对实体产品其实有着更强的购买欲望,但 Pixel 目前的市场覆盖率(约 0.7%)还不足以支撑其轴心地位,于是目前 Google 依赖 Assistant 来实现无处不在的计算,未来两者的关系将如何平衡?

5. One More Thing…

最后,谈谈 Google 为什么近期收购了 HTC 的 Pixel 手机部门。

现在我们已经可以很清楚地看出 Pixel 在 Google 硬件产品乃至整个 AI 布局中的地位,结合 6 月 Google 从 Apple 挖来芯片核心架构师 Manu Gulati,要为 Pixel 手机的新版本构建自研芯片。如此重要的战略产品如果仍借由他人代工,既不便于「软件+硬件+芯片」的优化,也不利于核心技术机密的保护,所以收购 Pixel 部门成为很自然的选择。

唯一的疑问是,该部门的定位只限于 Pixel 系列手机吗?


  1. 最明显的就是渠道方面,之前 Google 几乎之在自己的网上商城销售,相对于三星等公司每年数十亿美元的渠道及宣传费用,Google 的这点投入显然是不够的。 

  2. Augmented Hearing,这其实是分析师 Neil Cybart 在对 Apple HomePod 的测评中,设想的 HomePod 产品定位,多台 HomePods 同时发声,不仅是声音变大了,而是有更为丰富的体验,未来甚至可以在多人嘈杂房间实现无需耳机的高指向性私密对话。 

  3. 当然,收购 Moto 在当时很大程度上是为了应对专利战。 

  4. 其中,也包括数据科学家平台 Kaggle 的「数据民主化」,开源深度学习平台 TensorFlow,以及 TensorFlow Research Cloud (TFRC) 等。 

  5. 以 Google 为代表的「数据主义」可能不同意这个观点。 

创意从何而来?

Claude Shannon

(题图来自 《香农传》(A Mind at Play)

Claude Shannon 是「信息论之父」。

21 岁时,他完成了一篇惊人的硕士论文,展示了二进制交换机如何能够执行所有的逻辑功能。Walter Isaacson 认为,这一观点是「所有数字计算机背后的基本概念」。

32 岁时,他发表了《通信的数学原理》,被称为「信息时代的大宪章」,其中的「比特」(bit)概念,展示了如何将信息量化,并演示了电子信息如何被极度压缩后在任何两个点之间准确传递。

1948 年的「信息论」是你可以看到这篇文章,以及我们相互之间发送 Email 或用 IM 进行沟通的原因。在数字时代来临之前的好几十年,Shannon 就为我们准备好了理论基础。

他是如何做到的?

在一份未曾公开发布的文档中,Shannon 试着为我们回答了「创意从何而来?」这个问题。

这是 1952 年 3 月 20 日 Shannon 给其贝尔实验室同事的一份打字稿,题名为「创意思维」(Creative Thinking)。它我们提供了一个罕见的窗口,能够窥见这位天才科学家是如何抽丝剥茧来逐步解决问题的。

创新者的特质

Shannon 首先谈到的是创新者应具有的若干特质:

  • 首先,最明显的是训练和经验。不管你处于任何领域,你都应该具有该领域基本的理论素养。
  • 其次,有一定量的智力和才能。你至少应达到普通人的智商,才能比较好地完成工程或研究。

以上两者,Shannon 认为,并不是充分条件。

  • 他提出的第三个特质是动机。就算你拥有了所有的才能,你还是需要好奇心才能提出好问题。
  • 接着,是不满足。不是那种对世界的悲观性不满,而是一种建设性不满,一切可以做的更好。
  • 最后,是找到答案时的快乐,一种简单纯粹的快乐。

以上这些性格特质,都是优秀研究者所具备的。但是否有某种方法,可供所有人用于研究和探索?

Shannon 认为,是有的,并列出了 6 种方法:

1. 简化

无论你面对的是什么问题,Shannon 说,你首先要做的是简化:「你面对的几乎所有的问题都充斥着各种无关的信息;如果你能挑出主要矛盾,你就能更清楚地知道你需要做什么。」

例如,Shannon 的「信息论」,就从一个极度的简化开始:视任何信息源,从电视广播到基因,本质上是相同的。所有的信息可以被同一个单位——比特——来衡量,并且它们可以经历相同的基本过程,如编码、传输和解码。通过摆脱所有无效信息,Shannon 找到了信息的本质。

不管是什么问题,Shannon 说,「将其缩小」。他承认,在这个过程中可能会让问题「消失」。但这正是关键,「你可能把问题简化得和当初不太一样;但大多时候你能够解决这个简单问题,你可以将此解决方案不断改善,直到你回到了当初的那个问题。」

早在1977年,苹果就采用了一句格言:「简单是终极的复杂」,相信 Shannon 也会赞同。Steve Jobs 同样也理解这种简单并非碰运气。他说,「把事情简化需要付出很多的努力,要真正理解所面对的挑战并给出优雅的解决方案。」

Shannon 和 Jobs 都使「简单」化作了他们的武器,而其各自产品对当世的影响力则显示出,这是一个值得追求的目标。

2. 迁移

基于简化后的工作,你可能会尝试另一个方法:将你的问题与相似问题的已知解决方案一同考虑,并推断出答案有什么共同之处。Shannon 将其形象化地描述为「P 和 S」,「你现在有一个问题 P,在某处会有一个你还不知道的解答 S。如果你在某个你深耕的领域有相当的经验,你也许知道很多相似的问题,让我们称它为 P’,而它已经有了解答 S’,你所需要做的只是寻找从 P’ 到 P,以及从 S’ 到 S 的相似之处,从而得到原始问题的解答。」

Shannon 认为如果你是一个真的专家,「你的心智矩阵将充满 P 和 S,」许多问题已有众多解决方案。

我们能从相邻领域里找到隐藏的当前领域问题的答案,这似乎很容易理解,但多少人实际上会花时间在其他领域探索呢?作为一个新手,被空投到一个未知的智力领域是不太舒服的。但这种练习,正如 Shannon 所展现的,可以帮助每个人破解创新的障碍。

在每个阶段,他都曾发现事先无关领域之间的联系。在他的博士论文中,他将代数应用于遗传学,尽管之前并没有生物学和遗传学的背景,他还是在一年内做出了可出版的成果,他在符号逻辑和电气工程方面的多年工作为他提供了丰富的可迁移概念,让他对新的领域产生更深的理解。

Shannon 的例子启发我们,要收集和存储可能与我们的工作没有直接关系的信息和见解,可以通过类比提供有用的解决方案。

3. 多视角

接下来,Shannon 指出了多角度审视问题的价值。「改变话语,改变观点。……从某些心智障碍中挣脱出来,这些障碍让你以特定的方式看待问题。」换个角度,你可能会找到答案。

Shannon 的信息论其实是对一个老问题的重新审视——即远距离通信的问题。近一个世纪以来,人们普遍认为,解决此问题的方法,本质上是需要大声说话,即用更大的能量发送信号;而 Shannon 则证明,最可靠的方法是说得更聪明,用数字编码信息以使其不受干扰。工程学教授 James Massey 称这种洞见「似哥白尼」:换句话说,它颠覆了一种我们看待这个世界的古老方式。

把问题翻转的价值就是要避免「思维阻滞」,即被你或你所在领域已有的投入所困。就像 Shannon 所说的,「某个问题的新人」有时会是解决问题的人,他们不受已投入时间的偏见所束缚。你有一些心智障碍,而别人可以从全新的视角来看待这个问题。

这真的很难,但却很重要。

Michael Lewis,畅销书《点球成金》的作者,曾描述过一种他在编辑一部近乎完成作品的过程,从手机、打印的纸张和电脑屏幕等各个载体上反复观看,每次他都能发现不同的问题。这正是 Shannon 的建议,用以前未曾有过的方式来看待他的书面作品的「问题」。

我们自己如何能做到这一点?一种可行的方法是——广泛阅读。Shannon 的「P 和 S」策略之所以能奏效,是因为他有非常丰富的「心智矩阵」。在吸收知识方面他兴趣广泛,不仅阅读读数学和工程方面的论文,也吸纳诗歌、哲学,甚至音乐。这与 Charlie Munger 所推荐的「多学科视角」如出一辙。

4. 泛化

另一个能帮助研究工作的思维技巧,Shannon 认为,是泛化思想。事实证明,在最小级别成立的逻辑在更大级别往往也是成立的。

这在数学领域非常有用。正如 Shannon 所说,「典型的数学理论是从证明非常孤立、独特的结果、特殊的理论发展而来的。但总有人会来泛化它。」比如把它从 2 维变成 N 维;或是从某种代数演化为通用代数;或是从实数领域变为代数领域。

一旦你找到了解决方案,就花点时间来看看它能延伸到多远。

在互联网领域,Amazon 是将泛化应用得最成功的企业。从最初的卖书,到现在几乎卖所有的商品,而且从电商延伸到云计算,从线上延伸到实体店,「The Everything Store」是一种极致的泛化。

所以,如果有人在某件事上有了巧妙的解决方案,你应该马上问问自己,「我是否能将同样的原则应用到更多领域?我是否能将这个好主意用来解决更大的问题?是否还有别的地方还可以用这种特别的方法?」

5. 分解

Shannon 认为,改变观点的一种最为有力的方法就是通过「结构分析」——即将复杂的问题分解成小块。

数学家尤其如此。「数学上的许多证明实际上是通过极其迂回的过程找到的,」Shannon 指出。「当一个人开始证明某定理时,他发现他在整个地图上漫游,在证明了许多结果后,似乎并没有指向何处,然而最终会得到问题的答案。」通常,当你完成证明后,也许很容易来简化,即当你达到某一阶段后,你也许会发现过程中往往会有捷径。

当然,这种洞察力并不只限于数学。正如 Shannon 所指出的那样,他的机器和设计工作受益于同样的方法。伟大的工程师将这些挑战视为一系列小巧的步骤。不要着眼于整个问题,要找出其组成部分,并逐个解决。「但当你真正掌握并抓住了问题的本质后,你可以开始裁剪组件,发现一些部件其实是多余的,当初你并不需要它们。」

Shannon 这种方式的价值在于其允许一种巧妙的渐进主义。

正如 Shannon 所说,「对于任何心理思维,做出两个小跳跃总比一个大跳跃容易得多。」拒绝「一个大跳跃」是 Shannon 早年多产岁月的成功秘诀,《通信的数学原理》的出版是其标志。

6. 逆向

不能通过结构分析解决的问题仍可能被「逆向」解决。如果你不能用你的假设来证明你的结论,那么试想结论已经成立,反过来证明这个假设,看看会发生什么。

也许从这个方向证明相对容易,你会发现相对直接的路径。好比你在证明的路上做了个标记,然后反过来看你将如何抵达,也许只需要经历几个不那么困难的步骤。

这种「逆向归纳」有着广泛的应用,从博弈论到医学等等。在一次 TED 演讲中,国际象棋大师 Maurice Ashley 解释道,他经常用这种方法从他所想到的游戏终局来逆向推理。「当你被将死时,我在 10 步之前已经知道了结果,因为我知道你的对策」。

这种「逆向」解决问题的风格即使写作这样的领域也同样有用。虽然对于谁好谁坏,或谁对谁错,这个领域没有相对清晰的标准。但很多作者事实上喜欢从结论开始写,最后写到序言。在我自己参与编写的三本书中,打磨序言是我们向出版社发送稿件之前所做的最后几件事之一。

既然我们知道读者要去哪里,那么我们可以让他们更好地抵达那里。

以上,就是 Claude Shannon 对「创意从何而来?」的解答,看过之后我非常期待这本《A Mind at Play: How Claude Shannon Invented the Information Age》,希望能更多了解这位天才科学家的传奇一生。


附 Claude Shannon《Creative Thinking》原文:

Creative Thinking

“Creative Thinking”

Claude Shannon

March 20, 1952

Up to 100% of the amount of ideas produced, useful good ideas produced by these signals, these are supposed to be arranged in order of increasing ability. At producing ideas, we find a curve something like this. Consider the number of curves produced here — going up to enormous height here.

A very small percentage of the population produces the greatest proportion of the important ideas. This is akin to an idea presented by an English mathematician, Turing, that the human brain is something like a piece of uranium. The human brain, if it is below the critical lap and you shoot one neutron into it, additional more would be produced by impact. It leads to an extremely explosive of the issue, increase the size of the uranium. Turing says this is something like ideas in the human brain. There are some people if you shoot one idea into the brain, you will get a half an idea out. There are other people who are beyond this point at which they produce two ideas for each idea sent in. Those are the people beyond the knee of the curve. I don’t want to sound egotistical here, I don’t think that I am beyond the knee of this curve and I don’t know anyone who is. I do know some people that were. I think, for example, that anyone will agree that Isaac Newton would be well on the top of this curve. When you think that at the age of 25 he had produced enough science, physics and mathematics to make 10 or 20 men famous — he produced binomial theorem, differential and integral calculus, laws of gravitation, laws of motion, decomposition of white light, and so on. Now what is it that shoots one up to this part of the curve? What are the basic requirements? I think we could set down three things that are fairly necessary for scientific research or for any sort of inventing or mathematics or physics or anything along that line. I don’t think a person can get along without any one of these three.

The first one is obvious — training and experience. You don’t expect a lawyer, however bright he may be, to give you a new theory of physics these days or mathematics or engineering.

The second thing is a certain amount of intelligence or talent. In other words, you have to have an IQ that is fairly high to do good research work. I don’t think that there is any good engineer or scientist that can get along on an IQ of 100, which is the average for human beings. In other words, he has to have an IQ higher than that. Everyone in this room is considerably above that. This, we might say, is a matter of environment; intelligence is a matter of heredity.

Those two I don’t think are sufficient. I think there is a third constituent here, a third component which is the one that makes an Einstein or an Isaac Newton. For want of a better word, we will call it motivation. In other words, you have to have some kind of a drive, some kind of a desire to find out the answer, a desire to find out what makes things tick. If you don’t have that, you may have all the training and intelligence in the world, you don’t have questions and you won’t just find answers. This is a hard thing to put your finger on. It is a matter of temperament probably; that is, a matter of probably early training, early childhood experiences, whether you will motivate in the direction of scientific research. I think that at a superficial level, it is blended use of several things. This is not any attempt at a deep analysis at all, but my feeling is that a good scientist has a great deal of what we can call curiosity. I won’t go any deeper into it than that. He wants to know the answers. He’s just curious how things tick and he wants to know the answers to questions; and if he sees thinks, he wants to raise questions and he wants to know the answers to those.

Then there’s the idea of dissatisfaction. By this I don’t mean a pessimistic dissatisfaction of the world — we don’t like the way things are — I mean a constructive dissatisfaction. The idea could be expressed in the words, This is OK, but I think things could be done better. I think there is a neater way to do this. I think things could be improved a little. In other words, there is continually a slight irritation when things don’t look quite right; and I think that dissatisfaction in present days is a key driving force in good scientists.

And another thing I’d put down here is the pleasure in seeing net results or methods of arriving at results needed, designs of engineers, equipment, and so on. I get a big bang myself out of providing a theorem. If I’ve been trying to prove a mathematical theorem for a week or so and I finally find the solution, I get a big bang out of it. And I get a big kick out of seeing a clever way of doing some engineering problem, a clever design for a circuit which uses a very small amount of equipment and gets apparently a great deal of result out of it. I think so far as motivation is concerned, it is maybe a little like Fats Waller said about swing music — “either you got it or you ain’t.’’ if you ain’t got it, you probably shouldn’t be doing research work if you don’t want to know that kind of answer. Although people without this kind of motivation might be very successful in other fields, the research man should probably have an extremely strong drive to want to find out the answers, so strong a drive that he doesn’t care whether it is 5 o’clock — he is willing to work all night to find out the answers and all weekend if necessary. Well now, this is all well and good, but supposing a person has these three properties to a sufficient extent to be useful, are there any tricks, any gimmicks that he can apply to thinking that will actually aid in creative work, in getting the answers in research work, in general, in finding answers to problems? I think there are, and I think they can be catalogued to an certain extent. You can make quite a list of them and I think they would be very useful if one did that, so I am going to give a few of them which I have thought up or which people have suggested to me. And I think if one consciously applied these to various problems you had to solve, in many cases you’d find solutions quicker than you would normally or in cases where you might not find it at all. I thing that good research workers apply these things unconsciously; that is, they do these things automatically and if they were brought forth into the conscious thinking that here’s a situation where I would try this method of approach that would probably get there faster, although I can’t document this statement.

The first one that I might speak of is the idea of simplification. Suppose that you are given a problem to solve, I don’t care what kind of a problem — a machine to design, or a physical theory to develop, or a mathematical theorem to prove, or something of that kind — probably a very powerful approach to this is to attempt to eliminate everything from the problem except the essentials; that is, cut it down to size. Almost every problem that you come across is befuddled with all kinds of extraneous data of one sort or another; and if you can bring this problem down into the main issues, you can see more clearly what you’re trying to do and perhaps find a solution. Now, in so doing, you may have stripped away the problem that you’re after. You may have simplified it to a point that it doesn’t even resemble the problem that you started with; but very often if you can solve this simple problem, you can add refinements to the solution of this until you get back to the solution of the one you started with.

A very similar device is seeking similar known problems. I think I could illustrate this schematically in this way. You have a problem P here and there is a solution S which you do not know yet perhaps over here. If you have experience in the field represented, that you are working in, you may perhaps know of a somewhat similar problem, call it P’, which has already been solved and which has a solution, S’, all you need to do — all you may have to do is find the analogy from P’ here to P and the same analogy from S’ to S in order to get back to the solution of the given problem. This is the reason why experience in a field is so important that if you are experienced in a field, you will know thousands of problems that have been solved. Your mental matrix will be filled with P’s and S’s unconnected here and you can find one which is tolerably close to the P that you are trying to solve and go over to the corresponding S’ in order to go back to the S you’re after. It seems to be much easier to make two small jumps than the one big jump in any kind of mental thinking.

Another approach for a given problem is to try to restate it in just as many different forms as you can. Change the words. Change the viewpoint. Look at it from every possible angle. After you’ve done that, you can try to look at it from several angles at the same time and perhaps you can get an insight into the real basic issues of the problem, so that you can correlate the important factors and come out with the solution. It’s difficult really to do this, but it is important that you do. If you don’t, it is very easy to get into ruts of mental thinking. You start with a problem here and you go around a circle here and if you could only get over to this point, perhaps you would see your way clear; but you can’t break loose from certain mental blocks which are holding you in certain ways of looking at a problem. That is the reason why very frequently someone who is quite green to a problem will sometimes come in and look at it and find the solution like that, while you have been laboring for months over it. You’ve got set into some ruts here of mental thinking and someone else comes in and sees it from a fresh viewpoint.

Another mental gimmick for aid in research work, I think, is the idea of generalization. This is very powerful in mathematical research. The typical mathematical theory developed in the following way to prove a very isolated, special result, particular theorem — someone always will come along and start generalization it. He will leave it where it was in two dimensions before he will do it in N dimensions; or if it was in some kind of algebra, he will work in a general algebraic field; if it was in the field of real numbers, he will change it to a general algebraic field or something of that sort. This is actually quite easy to do if you only remember to do it. If the minute you’ve found an answer to something, the next thing to do is to ask yourself if you can generalize this anymore — can I make the same, make a broader statement which includes more — there, I think, in terms of engineering, the same thing should be kept in mind. As you see, if somebody comes along with a clever way of doing something, one should ask oneself “Can I apply the same principle in more general ways? Can I use this same clever idea represented here to solve a larger class of problems? Is there any place else that I can use this particular thing?”

Next one I might mention is the idea of structural analysis of a problem. Suppose you have your problem here and a solution here. You may have too big a jump to take. What you can try to do is to break down that jump into a large number of small jumps. If this were a set of mathematical axioms and this were a theorem or conclusion that you were trying to prove, it might be too much for me try to prove this thing in one fell swoop. But perhaps I can visualize a number of subsidiary theorems or propositions such that if I could prove those, in turn I would eventually arrive at this solution. In other words, I set up some path through this domain with a set of subsidiary solutions, 1, 2, 3, 4, and so on, and attempt to prove this on the basis of that and then this one the basis of these which I have proved until eventually I arrive at the path S. Many proofs in mathematics have been actually found by extremely roundabout processes. A man starts to prove this theorem and he finds that he wanders all over the map. He starts off and prove a good many results which don’t seem to be leading anywhere and then eventually ends up by the back door on the solution of the given problem; and very often when that’s done, when you’ve found your solution, it may be very easy to simplify; that is, to see at one stage that you may have short-cutted across here and you could see that you might have short-cutted across there. The same thing is true in design work. If you can design a way of doing something which is obviously clumsy and cumbersome, uses too much equipment; but after you’ve really got something you can get a grip on, something you can hang on to, you can start cutting out components and seeing some parts were really superfluous. You really didn’t need them in the first place.

Now one other thing I would like to bring out which I run across quite frequently in mathematical work is the idea of inversion of the problem. You are trying to obtain the solution S on the basis of the premises P and then you can’t do it. Well, turn the problem over supposing that S were the given proposition, the given axioms, or the given numbers in the problem and what you are trying to obtain is P. Just imagine that that were the case. Then you will find that it is relatively easy to solve the problem in that direction. You find a fairly direct route. If so, it’s often possible to invent it in small batches. In other words, you’ve got a path marked out here — there you got relays you sent this way. You can see how to invert these things in small stages and perhaps three or four only difficult steps in the proof.

Now I think the same thing can happen in design work. Sometimes I have had the experience of designing computing machines of various sorts in which I wanted to compute certain numbers out of certain given quantities. This happened to be a machine that played the game of nim and it turned out that it seemed to be quite difficult. If took quite a number of relays to do this particular calculation although it could be done. But then I got the idea that if I inverted the problem, it would have been very easy to do — if the given and required results had been interchanged; and that idea led to a way of doing it which was far simpler than the first design. The way of doing it was doing it by feedback; that is, you start with the required result and run it back until — run it through its value until it matches the given input. So the machine itself was worked backward putting range S over the numbers until it had the number that you actually had and, at that point, until it reached the number such that P shows you the correct way. Well, now the solution for this philosophy which is probably very boring to most of you. I’d like now to show you this machine which I brought along and go into one or two of the problems which were connected with the design of that because I think they illustrate some of these things I’ve been talking about.

In order to see this, you’ll have to come up around it; so, I wonder whether you will all come up around the table now.

工程师的本质

女程序员

(题图来自 Vox

1. Google’s Ideological Echo Chamber

近日,Google 员工 James Damore 在公司内网发布了一份长达 10 页的宣言,题为《谷歌的意识形态回音室》(Google’s Ideological Echo Chamber),在 Google 内部引起轩然大波,事件最早由 Motherboard 爆出,Gizmodo 随后放出了完整的文档。

Damore 的核心观点是:女性程序员偏少,不是因为她们受到了偏见和歧视,而是基于生理因素的先天差异。他进而批评 Google 的性别多元化(Diversity1)政策,为女性或少数族裔提供的教育培训过多了。并认为公司没有直面这一问题,一些想法太神圣以至于不能开诚布公地讨论,从而造成了一种意识形态的回音室。

随后,Damore 被 Google 开除,而他本人已向美国劳工关系委员会投诉,选择与 Google 对簿公堂。

2. Note to employees from CEO Sundar Pichai

刚刚进入休假的 Google CEO Sundar Pichai 选择了立即结束休假,回归应急。

他向全体员工发布了一封内部信,一方面维护员工表达意见的权力,如对培训、意识形态的讨论等;但另一方面,也为开除该员工辩护,表示他的一些性别观点超出了公司的准则和底线,如提出部分同时在生理上不适合目前的工作是不合适的,Google 的工作准则里期望「每位 Google 员工尽其所能创造一个没有骚扰、恐吓、偏见和非法歧视的工作文化。」

他表示,Google 内部正在经历一段艰难的时期。

3. So, about this Googler’s manifesto

这两天,在所有关于这次事件的各方讨论中,最令我豁然开朗2的是 Google 前员工 Yonatan Zunger 的「So, about this Googler’s manifesto」,他觉得 Damore 犯了三大错误:

  1. 作者并不理解性别(gender);
  2. 作者并不了解工程(engineering);
  3. 作者并不理解他这么写会对他人和自己产生什么后果。

其中,Zunger 着墨最多的是第二点,并指出了工程师的本质

Damore 所理解的工程,是可以独坐在电脑前进行 Coding。但 「工程并不是构造程序的艺术,而是解决问题的艺术,」Zunger 写道,「本质上,工程完全是合作、协作和共情。既是你和同事之间,也是你和客户之间。孤立的工作只发生在最初级的阶段,而即使这样一般来说很可能是你的主管已经花了很多精力来搭建起团队的人际架构,让你可以专注于代码。」

也许,黑客文化和开源运动助长了程序员界一种单枪匹马可以改变世界的认知,但每个和客户接触过的人都知道,客户需要的不是软件而是解决方案,和客户接触的那一刻起往往才是真正工作的开始。真正的专家无一例外地以顾客为第一位3,真正的工程也无一例外地以了解和实现客户需求为第一位。

「宣言」中对「女性特质」的描述,其实才是工程成功的关键。一位中级程序员已经基本上可以说对技术实现了完全的掌握,但真正困难的部分是「了解需要写什么程序,制定清晰的计划并让大家达成共识,以合力实现目标。」

百度内部强调「工程师文化」,更多强调「技术本身」;而 Robin 的「用户至上」其实更需要的是细腻精准直觉化的交互;Qi 的 「Engineering Leadership」(重点是开源和平台化)其实更需要的是沟通协调合作的能力。

别误解了所谓的「女性特质」,它们其实才是让你成为更好的工程师的关键。


  1. 多元化是指员工在性别、种族、性取向方面的不一样,促进公司内部的多元化成为美国主流社会倡导的政治正确文化,这表现在公司内部员工在男女、种族等方面的平衡分布。 

  2. 另一个关于「工程」并让我豁然开朗的观点来自侯捷,在《Word 排版艺术》的序言中,他写道:「艺术是什么?艺术和工程仿佛在光谱两端,但是艺术无处不在,不带 dirty work 的工程,就是一种艺术。」 

  3. 大前研一:「专家要控制自己的情感,并靠理性而行动,他们不仅具备较强的专业知识和技能以及较强的伦理观念,而且无一例外地以顾客为第一位,具有永不厌倦的好奇心和进取心,严格遵守纪律。以上条件全部具备的人才,我才把他们称为专家。」 

AI 素养

literacy

(题图来自 theagileelephant

21 世纪的文盲将不再指那些没有读写能力的人,而是指那些不会学习、不会扬弃和不会再学习的人。

— 阿尔文·托夫勒

1. 素养的起源

「素养」(literacy)源于拉丁语「literatus」一词。这个产生于西塞罗(Cicero)时代的词汇,其字面含义为「识字的人」,通常引申为有文化的(learned)。相对的,「illiteracy」则代表「文盲」。

「素养」的关键在于理解(comprehension)能力。对于「识字」这一系统来说,其核心是阅读能力的培养,一旦掌握了字、词、句、音、义、法等复杂的语言基础技能,就可以获得全面的语言素养,包括分析推理的判断能力,准确一致的写作能力等。

从这里也可以看出,真正的素养通常是双向的交换。我们不仅要阅读,也要写作;我们不仅要消费,还要生产。

英语中的「literacy」一词直到十九世纪末才出现,这种古典的识字定义一直持续到上世纪 70 年代才慢慢结束。

2. 素养的变迁

素养总是应新兴技术而变。每一项新技术从出现到获得社会的认可,都会伴随着一项新素养的形成。

在现代语境中,素养已不再局限于阅读、写作的能力了,而是扩展到包括使用语言、数字、图像、计算机和其他基本手段来了解、沟通、获得有用知识和使用符号系统的能力,如:

  • 计算机素养(Computer literacy)
  • 文化素养(Culture literacy)
  • 科学素养(Scientific literacy)
  • 生态素养(Ecological literacy)
  • 图形素养(Visual literacy)
  • 数据素养(Data literacy)
  • AI 素养(AI literacy)
  • ……

素养的激增见证着技术的进步,也决定了社会的进步1

3. 数据素养

「数据素养」是大数据时代的遗产。

前几年热炒的「互联网思维」便有一项「大数据思维」,是指对大数据的认识,对企业资产、关键竞争要素的理解。其落脚点「数据资产」,是从企业战略、资产负债表的角度来看待数据,而对普通人来说,更重要的是理解和使用数据,即拥有「数据素养」,维基百科对其的定义是:

以各种方式阅读、创建和交流数据的能力。

而我认为,更为通俗的说法是:

从数据中构建知识,并将其意义传达给他人。

它不是一项孤立的素养,而是综合了数字、统计、信息和媒体等的跨界素养transliteracy)。

对互联网行业来说,还有一个与之密切相关的词汇——「数据驱动」(data driven),指不再依赖个人直觉经验,而是通过及时的获取、处理和使用数据作为决策依据来不断迭代和优化产品。这是一种在数据素养基础之上的实践方法论,对这一方法论最为精简的表述我认为是「Build-Measure-Learn」的数据闭环。

4. AI 素养

而不知不觉间,我们又进入了 AI 时代,这一时代与过去的最大区别是什么?

  • 交互层面,过去是人来适应机器,现在是机器来适应人;
  • 机能层面,过去是取代人的身体,现在是取代人的大脑;
  • 认知层面,过去是认知上可解释,现在是认知上不透明;
  • ……

人工智能正在全方位地改变人的生活方式,最终也必将对「人」进行重新定义。

那「AI 素养」又都包含什么呢?

在日常生活中,我们不可能要求每个人都具有创造深度学习算法的能力,但我们必须能意识到是否有过剩的人、财、物或时间被花在了重复、分类、探索、优化等类型的工作上,我们必须养成时刻思考什么可以用 AI、什么又不能用 AI 的习惯,而这些的基础是对 AI 保持正确的认知

5. 怎样弥合 AI 鸿沟

素养产生自精英,其产生的同时也伴随着鸿沟2(divide)的形成;素养扩散向大众,对于任何技术而言,一旦有了成为素养的必要,代表着它已经成为一种被广泛接受的能力,都会经历一种民主化3(democratize)的过程;即让使用技术的权力,从精英到大众4

弥合 AI 鸿沟的唯一方式是教育。虽然 AI 在社会上的普遍应用可能还需数十年,但某些职业可能短短几年之内就会消失,政府的一项关键挑战就是让受冲击行业的劳动力能重新习得新技能,为他们提供再培训的机会;而对在校学生而言,政府也应着力加强「数据素养」和「AI 素养」的培养,未来的政府官员必须理解 AI 才能制定明智的政策,未来的管理人员必须了解 AI 才能管理企业;未来的工人必须学会与 AI 共事才能避免被淘汰。

现在我唯一的疑虑是,应该什么时候把下一代放到 AI 面前接受熏陶?


  1. 阮一峰有个观点我很赞同:「主导历史的因素,短期(一年到几年)是政治,中期(几年到几十年)是经济,长期(几十年到几百年)则是技术。」 

  2. 鸿沟有两层意思,一是能否接触到,二是是否具有理解和应用的能力。 

  3. 进入 AI 时代以来,Google 就一直在强调 「democratize AI」,并将「democratize data」作为一项关键举措。 

  4. 如果说商业天然信仰集中,那么技术则天然信仰分布。